

PGX Antidepressant (CYP2C19 and CYP2D6) Genotyping

For detection of CYP2D6 and CYP2C19 variants affecting antidepressant metabolism

Clinical Background

- *CYP2D6* is an isoenzyme of the *CYP450* superfamily that metabolizes and eliminates common prescription drugs, including amitriptyline, atomoxetine, codeine, nortriptyline, doxepin, paroxetine, clozapine, olanzapine, risperidone, and carvediol.
- *CYP2D6* is responsible for the metabolism and elimination of approximately 25% of clinically used drugs.
- *CYP2C19* is an isoenzyme of the *CYP450* superfamily that metabolizes and eliminates common prescription drugs, including anti-convulsants, anti-depressants, proton pump inhibitors, and antithrombotics (clopidogrel/Plavix[®]), as well as anti-malaria and anti-ulcer drugs.
- Metabolizer phenotypes can be predicted by the genotype
- The clinical impact of the genotype is influenced by whether a drug is activated or inactivated, involvement of other metabolic pathways, and other non-genetic factors (e.g., other medications).
- The following medications are impacted by CYP2D6 and/or CYP2C19:

TCAs

amitriptyline (Elavil and Endep are discontinued brands in the US) Clomipramine (Anafranil) desipramine (Norpramin) doxepin (Sinequan and Adapin are discontinued brands in the US) imipramine (Tofranil) nortriptyline (Pamelor; Aventyl is a discontinued brand in the US) trimipramine (Surmontil)

SNRIs

Venlafaxine (Effexor) Desvenlafaxine (Pristiq, Khedezla)

> Indiana University School of Medicine Division of Diagnostic Genomics - Pharmacogenomics Laboratory 975 West Walnut Street, IB350 Indianapolis, IN. 46202-5251 Tel. 317-274-0143

SSRIs citalopram (Celexa) escitalopram (Lexapro) fluvoxamine (Luvox) paroxetine (Paxil, Paxil CR, Pexeva) sertraline (Zoloft) vortioxetine (Trintellix, formerly known as Brintellix)

Epidemiology

- CYP2D6 and CYP2C19 variant frequency is ethnicity dependent.
- The poor metabolizer phenotype (caused by two non-functional *CYP2D6* alleles) is present in approximately 10% Caucasians; sensitivity is unknown in other ethnicities.
- The poor metabolizer phenotype (caused by two non-functional *CYP2C19* alleles) is present in 4% of Caucasians, 5% of African Americans, and up to 25% of Asians.

Genetics

- The CYP2D6 gene has nine exons and is located on chromosome 22q13.1
- The *CYP2C19* gene has nine exons and is located on chromosome 10q23.33.
- Inheritance is autosomal recessive.
- Penetrance is drug-dependent.

Indications for Ordering

• Pre-therapeutic testing to identify individuals who should avoid, or may require unconventional doses, of medications metabolized by *CYP2D6* and/or *CYP2C19*.

Interpretation

- If no variants are detected, this suggests *1 allele and normal enzymatic activity.
- If one decreased functional or non-functional variant is detected, intermediate-to-normal enzymatic activity is predicted.
- If two non-functional variants are present on opposite allele, this predicts low enzymatic activity and a poor metabolizer phenotype.
- If more than two functional copies are present, this predicts high enzymatic activity and an ultra-rapid metabolizer phenotype.
- Genotype results should be interpreted in context of the individual clinical situation. Consultation with a clinical pharmacy professional is recommended.

Indiana University School of Medicine Division of Diagnostic Genomics - Pharmacogenomics Laboratory 975 West Walnut Street, IB350 Indianapolis, IN. 46202-5251 Tel. 317-274-0143

Methodology

• Realtime Polymerase chain reaction (PCR) and microarray and copy number analysis

Variants in CYP2D6 and CYP2C19 Assay

			Predicted enzyme
Allele	variant	dbSNP	activity
*1	Assumed when no variant detected		normal
CYP2D6*2	2851C>T,	rs16947	Normal function
	4181G>C	rs1135840	
CYP2D6*3	2550delA	rs35742686	No function
CYP2D6*4	1847G>A,	rs3892097	No function
	100C>T	rs1065852	
CYP2D6*5	CYP2D6 deleted		No function
CYP2D6*6	1707delT	rs5030655	No function
CYP2D6*7	2936A>C	rs5030867	No function
CYP2D6*8	1759G>T	rs5030865	No function
CYP2D6*9	2615delAAG	rs5030656	Decreased function
CYP2D6*10	100C>T,	rs1065852	Decreased function
	4181G>C	rs1135840	
CYP2D6*17	1022C>T,	rs28371706	Decreased function
	2851C>T	rs16947	
CYP2D6*29	1660G>A	rs61736512	Decreased function
	2851C>T,	rs16947	
	3184G>A,	rs59421388	
	4181G>C	rs1135840	

Indiana University School of Medicine

Division of Diagnostic Genomics - Pharmacogenomics Laboratory 975 West Walnut Street, IB350 Indianapolis, IN. 46202-5251

Tel. 317-274-0143

CYP2D6*41	2989G>A	rs28371725	Decreased function
	2851C>T,	rs16947	
	4181G>C	rs1135840	
CYP2D6*1XN	Duplication		Increased function
CYP2D6*2XN	Duplication		Increased function
CYP2D6*4XN	Duplication		No function
CYP2D6*6XN	Duplication		No function
CYP2D6*9XN	Duplication		Normal function
CYP2D6*17XN	Duplication		Normal function
CYP2D6*29XN	Duplication		Normal function
CYP2D6*41XN	Duplication		Normal function
CYP2C19*1	Assumed when no variant detected		Normal function
CYP2C19*2	c.681G>A	rs4244285	No function
CYP2C19*3	c.636G>A	rs4986893	No function
CYP2C19*4	c.1A>G	rs28399504	No function
CYP2C19*6	c.395G>A	rs72552267	No function
CYP2C19*8	c.358T>C	rs41291556	No function
CYP2C19*17 (also *4			Increased function
haplotype [*4B])	c806C>T	rs12248560	